Rumus cepat mencari luas segitiga sama sisi



Jika bertemu dengan soal mencari luas segitiga sama sisi, kita bisa menggunakan rumus cepat. Rumus yang memudahkan perhitungan dan jawaban diperoleh dalam waktu singkat.


Bagaimana rumus itu diperoleh?
Kita akan menggunakan cara biasa dan bantuan teori pitagoras. Nantinya diperoleh rumus jadi yang bisa digunakan untuk segitiga sama sisi.

Ingat!
Rumus yang diperoleh nanti hanya untuk segitiga sama sisi saja ya!
Segitiga lain tidak bisa menggunakan rumus cepat ini.

Memperoleh rumus cepatnya

Ok...
Sekarang kita mulai mencari rumus cepatnya.


Perhatikan segitiga sama sisi di atas.
  • Ketiga sisinya sama panjang.
    AB = BC = AC = a cm
  • BD dan CD setengah dari sisi segitiga = ½a


Mencari tinggi


Langkah pertama kita harus mencari tinggi dari segitiga sama sisi, yaitu AD.
Gunakan segitiga ADC yang siku-siku di D.

Kalau mau menggunakan segitiga ABD juga bisa kok, nanti hasilnya sama.

Baik, perhatikan lagi segitiga ADC.
  • Sisi miring AC = a
  • Sisi tegak CD = ½a
Karena ADC segitiga siku-siku, kita bisa mencari AD, yang berfungsi sebagai tinggi segitiga siku-siku sekaligus tinggi segitiga sama sisinya.

AC² = AD² + CD²
  • Masukkan data yang sudah diketahui
  • AC = a
  • CD = ½a
a² = AD² + (½a)²
  • (½a)² = ¼a²

a² = AD² + ¼a²
  • Pindahkan ¼a² ke ruas kiri sehingga menjadi -¼a²
a²-¼a² = AD
  • a² = ⁴∕₄a²
  • Kita buat seperti itu untuk menyamakan penyebut dengan ¼a²
⁴∕₄ a²-¼ a² = AD

³∕₄ a² = AD
  • Untuk mendapatkan AD, ruas di sebelah harus di akarkan ya
AD = √(³∕₄a²)
  • Akar ¼ adalah ½
  • Akar a² adalah a
  • Sedangkan 3 tetap di dalam akar karena tidak bisa diakarkan

AD = ½a√3



Memasukkan ke rumus luas


Tinggi segitiga sudah diperoleh dan sekarang kita masukkan ke rumus umum segitiga untuk mendapatkan rumus cepat segitiga sama sisi.

Rumus umum segitiga adalah:

Luas = ½×alas×tinggi
  • Alas = BC = a
  • Tinggi = AD = ½a√3
Luas = ½×a×½a√3

Luas = ¼×a²×√3

Nah...
Inilah rumus cepat memperoleh luas segitiga sama sisi.

Ingat!
Rumus luas = ¼×a²×√3 hanya bisa digunakan untuk segitiga sama sisi saja ya!!

Soal pertama

Sekarang kita terapkan rumus tersebut ke dalam soal.

Soal:

1. Segitiga sama sisi dengan panjang sisi 6 cm, hitunglah luasnya!


Yuk, langsung terapkan rumusnya untuk soal ini.

Data pada soal:
  • Panjang sisi segitiga sama sisi (a) = 6 cm.
Rumus luas segitiga sama sisi adalah:

Luas = ¼×a²×√3
  • Ganti a dengan 6
Luas = ¼×6²×√3

Luas = ¼×36×√3
  • ¼×36 = 9
Luas = 9×√3

Atau bisa ditulis:

Luas = 9√3 cm²

Bagaimana, cepat bukan??

Soal kedua

Ayo coba satu soal lagi agar lebih paham ya...

Soal:

2. Sebuah segitiga sama sisi dengan panjang sisi 8 cm, berapakah luasnya!


Cek dulu data pada soal:
  • Panjang sisi (a) = 8 cm
Masukkan data ini ke rumusnya langsung.

Luas = ¼×a²×√3
  • Ganti a dengan 8
Luas = ¼×8²×√3

Luas = ¼×64×√3
  • ¼×64 = 16
Luas = 16×√3

Luas = 16√3 cm²


Semoga membantu ya!!
Nanti kalau bertemu soal yang mencari luas segitiga sama sisi, bisa gunakan rumus ini.

 
Baca juga ya:


EmoticonEmoticon