Mencari Sumbu Simetri Dan Titik Puncak Grafik Persamaan Kuadrat : x2 4x + 5



Persamaan kuadrat adalah persamaan yang mempunyai grafik melengkung seperti parabola dan juga memiliki sebuah sumbu simetri dan satu titik puncak.

Itulah yang akan kita cari.



Soal :

1. Carilah sumbu simetri dan titik puncak dari persamaan kuadrat : y = x² + 4x + 5



Mari perhatikan persamaan kuadratnya lagi..

y = x² + 4x + 5

dan rumus umum persamaan kuadrat adalah :

y = ax² + bx + c


Sekarang kita akan menentukan nilai a, b dan c dari persamaan kuadrat yang diketahui.

y = x² + 4x + 5

  • "a" adalah angka di depan x², sehingga a = 1
  • "b" adalah angka di depan x, sehingga b = 4
  • "c" adalah angka yang tidak mengandung variabel, sehinggga c = 5



Mencari sumbu simetri


Untuk rumus sumbu simetri, sebagai berikut :


x = -b/2a


Sekarang masukkan nilai a dan b ke dalam rumusnya..


x = -b/2a

  • b = 4
  • a = 1

x = -4/2.1

x = -4/2


x = -2


Jadi sumbu simetri dari persamaan parabola diatas adalah x = -2.




Mencari titik puncak


Untuk mendapatkan titik puncak, kita tinggal masukkan nilai pada sumbu simetri ke persamaan kuadratnya.

y = x² + 4x + 5

  • Masukkan x = -2 (hasil "x" pada sumbu simetri)

y = (-2)² + 4.(-2) + 5

y = 4 - 8 + 5

y = 1


Sehingga titik puncaknya adalah (x,y) = (-2,1)


Sumbu simetri juga berfungsi sebagai nilai "x" untuk titik puncaknya. Dan untuk mencari "y", tinggal masukkan sumbu simetri ke rumus persamaan kuadratnya.





Soal :

2. Tentukanlah sumbu simetri dan titik puncak dari persamaan kuadrat : y = x² - 6x + 9


Kita akan tentukan dulu nilai a, b dan c

y = x² - 6x + 9

  • "a" adalah angka di depan x², sehingga a = 1
  • "b" adalah angka di depan x, sehingga b = -6
  • "c" adalah angka yang tidak mengandung variabel, sehinggga c = 9



Mencari sumbu simetri


Rumus sumbu simetri adalah :


x = -b/2a


Kemudian,  masukkan nilai a dan b ke dalam rumusnya..


x = -b/2a

  • b = -6
  • a = 1

x = -(-6)/2.1

x = 6/2


x = 3


Sehingga diperoleh sumbu simetri-nya, x = 3




Mencari titik puncak


Setelah menemukan sumbu simetri, sekarang masukkan nilai "x" sumbu simetrinya ke dalam rumus persamaan kuadrat.

y = x² - 6x + 9

  • Masukkan x = 3 (hasil "x" pada sumbu simetri)

y = (3)² - 6.(3) + 9

y = 9 - 18 + 9

y = 0


Sehingga titik puncaknya adalah (x,y) = (3,0)



Baca juga ya :


EmoticonEmoticon